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Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion
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Highly supercooled liquids with soft-core potentials are studied via molecular-dynamics simulations in two
and three dimensions in quiescent and sheared conditions. We may define bonds between neighboring particle
pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural
rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature
T. The bond lifetimer, , which depends o and the shear ratg, is on the order of the usual structural @r
relaxation timer, in weak shearyr,<1, while it decreases asy/in strong sheafy7,>1 due to shear-
induced cage breakage. Accumulated broken bonds in a time interdaDBr,,) closely resemble the critical
fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike
form, which yields the correlation lengthrepresenting the maximum size of the clusters composed of broken
bonds. We also find a dynamical scaling relatiegys;- €%, valid for anyT and ¥ with z=4 in two dimensions
andz=2 in three dimensions. The viscosity is of ordgrfor any T andy, so marked shear-thinning behavior
emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine motion of tagged
particles in shear in three dimensions. The diffusion constant is found to be ofgrtferth »=0.75~0.8 for
any T and ¥, so it is much enhanced in strong shear compared with its value at zero shear. This indicates a
breakdown of the Einstein-Stokes relation in accord with experiments. Some possible experiments are also
proposed[S1063-651X98)16409-1

PACS numbg(s): 64.70.Pf, 83.50.Gd, 61.43.Fs

I. INTRODUCTION [11] observed similar kinetic heterogeneities but the correla-
tion length was still on the order of a few particle diameters.
Particle motions in supercooled liquids are severely re-The characterization of these patterns has not been made in
stricted or jammed, thus giving rise to slow structural relax-these papers. Recently our simulations on model fluid mix-
ations and highly viscoelastic behavidr,2]. Recently much tures in two and three dimensiof$3—-15 have identified
attention has been paid to the mode-coupling thd8u], weakly bondear relatively activeregions from breakage of
which is an analytic scheme describing the onset of slovappropriately defined bonds. Spatial distributions of such re-
structural relaxations considerably abdvg There, the den- gions resemble the critical fluctuations in Ising spin systems,
sity fluctuations with wave numbers around the first peakso the correlation lengtk can be determined. It grows up to
position of the structure factor are of the most importancehe system size &8 is lowered, but no divergence seems to
and no long-range correlations are predicted. For a long timegxist at nonzero temperaturgh3,19—-2]. Donatiet al. have
however, it has been expectfs-8| that rearrangements of observedstringlike clusters whose lengths increase at low
particle configurations in glassy materials should be cooperdemperatures in a three-dimension@D) binary mixture
tive, involving many molecules, owing to configuration re- [17]. In addition, Monte Carlo simulations of a dense poly-
strictions. In other words, such events occur only in the formmer by Ray and Binder showed a significant system size
of clusterswhose sizes increase at low temperatures. In nordependence of the monomer diffusion constant, which indi-
mal liquid states, on the contrary, they are frequent and uneates heterogeneities over the system E183.
correlated among one another in space and time. Such an Most previous papers so far have been concerned with
idea was first put forth by Adam and GiblS], who in-  near-equilibrium properties, such as relaxation of the density
vented a frequently used jargoogoperatively rearranging time correlation functions or dielectric response. From our
regions (CRR). However, it is difficult to judge whether or point of view, these quantities are too restricted or indirect,
not such phenomenological models are successful in descriland there remains a rich group of unexplored problems in
ing real physics and in making quantitative predictions. far-from-equilibrium states. For example, nonlinear glassy
Molecular-dynamicsMD) simulations can be powerful response against electric field, strain, etc. constitutes a future
tools to gain insights into relevant physical processes iproblem[22]. In this paper we apply a simple shear flow
highly supercooled liquids. Such processes are often maskeg.= Yy in the x direction and realize steady sta{@$]. The
in averaged quantities such as the density time correlatioselocity gradienty in they direction is called the shear rate
functions. As a marked example, we mention kinetic heteroor simply shear. We shall see that it is a relevant perturbation
geneities observed in recent simulatigfgs-18]. Using a  drastically changing the glassy dynamics wheexceeds the
simple two-dimensional fluid, Muranaka and Hiwat§®] inverse of the structural ae relaxation timer,. As is well
visualized significant large-scale heterogeneities in particl&nown, 7, increases dramatically from microscopic to mac-
displacements in a relatively short time interval, which wasroscopic times in a rather narrow temperature rafigé].
supposed to correspond to tjgerelaxation time regime. In  Generally, in near-critical fluids and various complex fluids,
liquid states with higher temperatures, Hurley and Harrowelhonlinear shear regimes are known to emerge whesx-
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ceeds some underlying relaxation rg28]. However, in su- wherer, is obtained from the decay of the time correlation
percooled liquids, it is unique that even very small shear carfunction as in our case in Sec. Y41]. We will examine this
greatly accelerate themicroscopicrearrangement processes. problem in a much larger 3D system with=N;+ N,
Similar effects are usually expected in systems composed of 10* generally in the presence of shear, where the viscosity

very large elements such as colloidal suspensions. and the diffusion constant both vary tremendously in strong
Though rheological experiments on glass-forming fluidsshear ¢=1/7,).
have not been abundant, Simmaetsal. found that the vis- The organization of this paper is as follows. In Sec. Il, our

cosity 7(y) = o,/ y exhibits strong shear-thinning behavior, model binary mixtures and our simulation method will be

explained. In Sec. lllbondsamong particle pairs will be
n(y)=7(0)/(1+y7,), (1.1)  introduced at distances close to the first peak position of the

pair correlation functions. Breakage of such bonds will then

in soda-lime-silica glasses in steady states under §Bdar  be followed numerically, which exhibits heterogeneities en-

26], 7, being a long rheological time. After application of hanced at low temperatures. Their analysis will yield the

shear, they also observed overshoots of the shear stress Iggrrelation length in Sec. IV. Rheology of supercooled lig-

fore approach to Steady states. Our previous remmnﬂﬂ uids will be studied in Sec. V. These effects were briefly

have treated nonlinear rheology in supercooled liquids, irfeported in our previous reporf$3—13. In Sec. VI, results

agreement with these experiments. Interestingly, sijala=  on the motion of tagged particles will be presented.

ming dynamicsas begun to be recognized also in rheology

of foams[27-29 and granular materials30] composed of Il. MODEL AND SIMULATION METHOD

large elements. Shear-thinning behavior and heterogeneities . . . . .

in configuration rearrangements are commonly observed also We perfqrmed _MD S|mulat!ons In two dimension&D)

in these macroscopic systems. and three dimension@D) on binary mixtures composed of

As a closely related problem, understanding of mechanitWo different atomic species, 1 and 2, with =N,=5000
cal properties of amorphous metals such as-Du, has particles with the system volumé being fixed. Parameters

been of great technological importanf&1—35. They are chosen are mostly common in 2D and 3D. They interact via

usually ductile in spite of their high strength. At low tem- the soft-core potentig9—15,41-43

peratures <0.6~0.7T,, localized bands$1 um), where 1

zonal slip occurs, have been observed above a yield stress. Vap(N)=€(o,pI1)%  0ap=5(0,t0g), (2.
At relatively high temperatures=0.6~0.7T, on the other 2
hand, shear deformations are indudesimogeneouslyon
macroscopic scalgghroughout samples, giving rise to vis-

cous flow with strong shear thinning behavior. In partlcular,:3al in 3D. The leapfrog algorithm is used to integrate the

in their 3D simulations, Takeuchet al. [34,35 followed . . i ) 4
atomic motions after application of a small shear strain todlfferenual equations with a time step of 0.0@5 where

observe heterogeneities amopgorly and closely packed
regions which are essentially the same entities we have dis-
cussed. Our simulations under shear in this paper corresporge space and time are measured in units-pind 7,. The
to thehomogeneouregime at relatively high temperatures in ,4ss ratio ism, /m, =2, while the size ratio is
amorphous metals.

Another interesting issue is as follows. Several experi- orlo1=1.4 (d=2), o,l0;=12 (d=3), (2.3
ments have revealed that the translational diffusion constant
D of a tagged particle in a fragile glassy matrix becomeswvhere d is the space dimensionality. This size difference
increasingly larger than the Einstein-Stokes valDgs  prevents crystallization and produces amorphous states in
=kgT/27na with lowering T, where 7 is the (zero-shear  our systems at low temperatures.

where r is the distance between two particles andgB
=1,2. The interaction is truncated &t 4.50; in 2D andr

7o=(myoil €)Y (2.2

viscosity anda is the diameter of the particle,36—38. In We fixed the particle density at
particular, the power-law behavidde 77 with »=0.75 §
was observed at sufficiently low temperatuf@$]. Thus n=0.8/o7, (2.9

D/Dgs increases from of order 1 up to order?:a® in _ _

supercooling experiments. Furthermore, smaller probe paWheren=n;+n, is the total number density. The system
ticles exhibit a more pronounced increase of the ratidinear dimension id. =118 in 2D andL=23.2 in 3D. Then

D 7/ T=D/Dgs With lowering T [37]. It is generally believed ~©OUr systems are highly compressed. In fact, the volume frac-
that 7 is proportional to thea relaxation timer, or the tion of the particles may be estimated agoin; +oj3n,)
rotational relaxation time D,y for anisotropic molecules =0.93 in 2D and ag m(o3n;+a3n,) =0.57 in 3D, where
(D, being the rotational diffusion constanf36,37,39. overlapped regions are doubly counted. In such cases, ac-
Therefore, individual particles are much more mobile at longcording to the Henderson and Leonard the#$-45, our
timest= 7, than expected from the Stokes-Einstein formula.binary mixtures may be fairly mapped onto one-component
In a MD simulation on a 3D binary mixture witN=500 in  fluids with the soft-core potential with an effective radius
3D [40], the same tendency was apparently seen despite thedefined by

small system size. Very recently, in a MD simulation in a 2D

binary mixture Withl_\l=_1024, Perera_and Harrqwell have Ugﬁ: E XaXBUiB, (2.5
observed clear deviation from the linear relati®ner,, 2
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TABLE I. Simulations in 2D.

P 1= o > Jdrx XgU L a(r)rg e 5(r)
B aXplapll)1Qap
. 1.0 11 1.2 1.3 1.4 nkeT 2dksT5%
keT/e 254 143 085 0526  0.337 B .
p/nksT—1 151 226 335 502 75.1 =6Valen | S@G(S,Feﬁ), (2.11

» wherev;B(r)zdvaﬁ(r)/dr andVy is the volume of a unit
wherex,=n, /n andx,=n,/n=1-Xx, are the compositions  gyhere o it is 4/3 in 3D and in 2D. We shall see that

of the two components and are 1/2 in our case. As in theq (2 1) holds very well around the first peak of the pair
one-component case, the thermodynamic state is charactqls re|ation functions in our simulations. This fairly supports
ized by a single parametéeffective density, the one-fluid approximation, because the soft-core potential

and the pair correlation functions decrease very abruptly for
r=l,s and forr=I,4, respectively, and the dominant con-
tribution arises front ~I ,3~0,

In our systems the structural relaxation time becomes very
rium pressurep may be well fitted to the scaling form, long atlow temperatures. Therefore, the annealing time was
p/nksT—1=6+6.8480 )%, at all x, in 3D. In Tables | taken to be at least $0n 2D and 10 in 3D. No appreciable
and Il we listT" o chosen in our simulations together with the @9ing effect was detected in the course of taking data in
corresponding scaled temperatures and pressures in 2D aM@rious quantities such as the pressure or the density time
3D. Our pressure data agree very well with the above scalingorrelation function except for the lowest temperature cases,

Teg=n(elkgT) 20 . (2.6

For example, Bernet al. [43] confirmed that the equilib-

form for 3D.

We introduce here the pair correlation functiomss(r)
by

(No(NNE0)) =NyNpGap(r) +Nyd,sd(r), (2.7

where

Nu(N =2 8(r—ry) (a=12) (2.9
]

off= 1.4 in 2D andl'+=1.55 in 3D. A small aging effect
remained in the density time correlation function in these
exceptional cases, however.

Our simulations were performed in the absence and pres-
ence of shear flo46,47. In the unsheared cas&£0) we
performed simulations under the microcanoniéabnstant
energy condition. However, in the sheared cagex0), we
kept the temperature at a constant using the Gaussian con-
straint thermostat to eliminate the viscous heating effect. No
difference was detected between the profile-based and
profile-unbased thermostdi47], so results with the profile-
based thermostat will be presented in this paper. Our method
of applying shear is as follows: The system was at rest for

are the number densities in terms of the particle positiong<( for a very long equilibration time and was then sheared

roj (@=12j=1,... N/2). The time dependence is Sup- for t>0. Here we added the average velodjty to the ve-
pressed for simplicity. In a highly compressed state the inygcities of all the particles in the direction att=0 and

terparticle distances between theand 8 particles are char-
acterized by

|aB:0'aB( G/kBT)lllZ. (29)

The last factor é€/kgT)¥*?represents the degree of expulsion
or penetration from or into the soft-core regiomsJ(o,5) on

particle encounters, though it is not far from 1 in our case.

The one-fluid approximation may be justified if the pair cor-
relation functions satisfy

9ap(r)=G(r/l 5.1 ex). (2.10

Namely, g,4(r) are independent of, 3, andx, once the

distance is scaled bly,;. The pressure is then expressed as
[45]

TABLE Il. Simulations in 3D.

| 1.15

13 1.4 1.45 15 1.55
kgT/e 0.772 0.473 0.352 0.306
p/nkgT—1 18.9 26.7 334 372 414

afterwards maintained the shear flow by using the Lee-
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FIG. 1. A typical particle configuration and the bonds defined at

0.267 0.234 agiventime al' .= 1.4 in 2D. The diameters of the circles here are
46.3 equal too, . The areal fraction of the soft-core regions is 93%. A
1/16 of the total system is shown.
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FIG. 3. The structure factoi3(q) defined in Eqs(3.3)—(3.5) in

FIG. 2. The pair correlation functiorg,5(r) in quiescent states quiescent states dit.=1.4 in 2D (a) and atl'¢z=1.55 in 3D (b).

as functions of /o, atI'ey=1.4 in 2D(a) and atl'¢z=1.55in 3D  The dimensionless wave numbegris measured in units ofr L.

(b). The solid, dashed, and dotted lines correspongLieps, X-X, and
peri-X correlations, respectively.

Edwards boundary conditiof46,47. Then steady states . ,
were realized after a transient time. In our case shear flo? t€rms of which the local volume fraction of the soft-core

serves to destroy glassy structures and produces no longg9ions ismper(r) in 2D and by (47/3)per(r) in 3D. We
range structure. also consider the local composition fluctuation,

. 1. .
OX(r)=—=[Xon1(r)—X4N»(r)], 3.2
lll. PAIR CORRELATIONS AND BOND BREAKAGE (r) n[ 2Ma(1) =xqNa(r)] (32

A. Pair correlations wherex; =x,=1/2 in our case. In Fig. 3 we show the corre-

Because of the convenience of visualization in 2D, weSPonding, dimensionless structure factors,
first present a snapshot of particledaig=1.4 in 2D in Fig.
1, which gives an intuitive picture.of the partiqle configura-_ Spp(Q):UIdJ dre'®"( Speu(r) 5pe(0)), (3.3
tions. We can see that each particle is touching mostly six
particles and infrequently five particles at distances close to
1 A : : . . -

0,5(=1.095"1,5). Similar jammed particle configurations S, x( ):U*dJ’ dre'@"{ 5peq(r) 5X(0)), (3.9
can also be found in 3D, where the coordination number of P ! (e )
other particles around each particle is about 12. Then it is
natural that the pair correlation functiorg;aﬁ_(r) (a,,B. SXX(q):UIdf dre'a( 5)‘((”5)“((0)), (3.5
=1,2) have a very sharp peak e&o,s, as displayed in
Fig. 2 forT' 4= 1.4 in 2D andl" ;4= 1.55 in 3D. Furthermore, A _ A ga . S
the heights of these peaks are all close to 7 in 2D and 4 irtv}\:gesifgleglfg{furé’;ggtb;hey are linear combinations of
3D. This confirms the scaling forr2.10 around the first k
peak. ,
We introduce a density variable representing the degree of Sup(Q) = nangf dre'dg,a(r)—1], (3.6
particle packing by

) a4 i from the definitiong3.1) and(3.2). The temperatures in Fig.

Per(1) = oyN1 (1) + o3n,(r), (3.1 3 are common to those in Fig. 2. Note that the dimensionless



PRE 58 DYNAMICS OF HIGHLY SUPERCOOLED LIQUIDS: ... 3519

wave numbenq is measured in units af; *. TheS,,(q) has  ence of shear. Such bonds will be broken on the structural
a pronounced peak ayj~6 and becomes very small (a) relaxation time, because the bond breakage takes place
(~0.01) at smalleg both in 2D and 3D. In this sense our on local configurational rearrangements. We define the
systems are highly incompressible at long wavelengths. Ohonds as follows. For each atomic configuration given at
the other handSyx(q) has no peak and is roughly a constanttime ty, a pair of particles andj is considered to be bonded
over a very wideg region, suggesting no enhancement of theif

composition fluctuations and no tendency of phase separa-

tion at least in our simulation times. rij(to) =|ri(to) = ri(to)[<Aroyp, 3.9

From Fig. 3 we may estimate the magnitude of the 1SOherei andj belong to the speciea and 8, respectively.

thermal compressibilitKrx=(dn/dp)x/n. In equilibrium We have sefA;=1.1 for 2D and 1.5 for 3D. The resultant
it is expressed in terms of the fluctuation variances as bond numbers betwees and 8 pairs, Ny, are related to
ke TKryx=n"4lim[S11(q)Sya ) — Sy2(9) 2]/ Sxx(q) the fir§t p_eak structure @f,(r) as follows. We conside;r the
q—0 coordination number,; of 8 particles around aw particle
within the distanced;o 4 [43],

d
g1 .
= — M [S,,(a) — S,x(q) %/ Sxx(q)].
(U‘fnﬁognz)zqw oo pX X Vaﬁ:nBJr<Alzf Bdrgaﬁ(r)~CnBagB, (3.10

(3.7)
whereC is about 5 in 2D and 12 in 3D. Then we simply have
The first line was the expression in Ret8], and the second

i i i i- 1 1 1
line follows if use is made of Eqg3.1) and(3.2). The di mezzNaVM (a=12), Nb12=§N1V12+ “ Ny

mensionless combinatiamkg T K1y is equal to 0.0028 in 2D 2

and 0.0067 in 3D. If we assume that the adiabatic compress- (3.11

ibility Kx=(dn/dp)sx/n is of the same order as;y, the ,

sound speed turns out to be of order 10 in units of, /7,. N 2D atTer=1.4, we findvy,=2.19, v1,=v=2.54, and
Our structure factors were obtained by time averaging’2e=3-41, which are consistent with the bond numbers,

over very long times, which are 1@or 2D and 10 for 3D. b11= 5514, Np;=13 135, andNp,,=8436, counted in a

However, irregular shapes 8x(q) persisted at long wave- Simulation. In 3D atl'er=1.55, these numbers arey;

lengthsg=1. Such large-scale composition fluctuations have=5-57, ¥12= ¥21=6.90, andv,,=8.30, which are again con-

very long lifetimes & r,) and are virtually frozen through- SiStent withNp;;=13 925,Ny,;,=34 476, andNpz,=20 744

out the simulation. Therefore, we admit the possibility thatin @ Simulation. We stress that our bond definition is insen-

our supercooled states at low temperatures might phaséltive toA;, owing to the sharpness of the first peak, as long

separate to form crystalline regions on much longer timeaS it |s.somewhaf[ I_arger than 1 and smaller than the second

scales. On the contrary, the long-wavelength fluctuations op€ak distances divided by,z.

perr have much shorter time scales; probably they vary on After_a lapse of timeAt, a pair is regarded to have been

acoustic time scales 1/cq. broken if
As is well known, the temperature dependence of the

static pair correlation functions is much milder than that of

the dynamical quantities. Similarly, their shear dependence ig;ith A,=1.6 for 2D and 1.5 for 3D. This definition of bond
also mild even foryr,>1 as long asy<1. In particular, preakage is also insensitive #, as long asA,=A,; and
their spatially anisotropic part is at most a few percent OfAzUaﬁ is shorter than the second peak positionggf(r).

their isotropic_ pgrt arou_nd the fi_rst peak positiorso g in _ We have followed the relaxation of the total surviviun-
our case. This is consistent with the fact that the attalnquroke,) bondsNpoAt) from the initial number

shear stress in our simulations is at most a few percent of the
particularly high pressur@ of our systems. Note that the Npond 0) =Np11+ Np12+ Np22 3.13
average shear stress,, in sheared steady states may be

related to the steady-state pair correlation functigpg(r)  to zero with increasingAt. No significant difference has
as[45] been found between the bond breakage processes of the three

kinds of bonds, 1-1, 1-2, and 2-2, so we consider their sum
only. We define the bond breakage timgby

Npond 7) = Npond 0)/€. (3.19

wherer;(_ and ryt"_"rle thex anfjriq codmpo_nen:s of tth% Vt?CtmL The relaxation is not simply exponential at low temperatures,
cqnne(;mg {)har icle |c3[a|rs. t: ominant contrioution ereapparently because of large-scale heterogeneities composed
arises from the anisotropy a&=oq- of relatively weakly and strongly bonded regions. If we fit

Npond At) to the stretched exponential fornNy.,{At)
~ex;{—(At/rb)a'], the exponena’ is close to 1 at relatively

Because of the sharpness of the first peagg of(r) inour ~ high temperatures but is considerably smaller than 1 at the
systems, we can unambiguously deflmendsbetween par- lowest temperature§or example,a’~0.6 atI'g=1.55 in
ticle pairs at distances close g, in the absence and pres- 3D).

1 ryr
ny: — Eazﬁ nanﬁf drU;B(r)%galB(r)l (38)

B. Bond breakage
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FIG. 4. Temperature dependence of the bond breakage time 10! T T T T T
7(0) at zero shear@®) in 2D and (¢) in 3D. Thee is the poten-
tial parameter in the soft-core potentigksl). The time is measured 10°
in units of 7y in Eq. (2.2), so 7,(0) is dimensionless.
—~
. . . Q -
In Fig. 4 we show the bond breakage timg=7,(T) in 15101
the absence of shear as a function of the temperature. It ~
grows strongly with decreasing the temperature. As will be 102
. . . . -0
shown in Eq.(6.8) in Sec. lll, the bond breakage timg is =
proportional to thex relaxation timer, obtained from the 100

decay of the self-part of the time correlation functieg(q,t)

atq=2m. The shear dependence of the bond breakage time
= 7p(y) is also of great interest. As shown in Fig. 5, the 10 ' '
bond breakage rate 4/(y) consists of the thermal breakage

1
102 10" 10° 1000 100 10° 10*

. op(0
rate 1/,(0) strongly dependent o and a shear-induced 7%(0)
breakage rate proportional tp. It is expressed in the sim- FIG. 5. The normalized bond breakage timgy)/r,(0) versus
plest conceivable form, y7,(0) for variousI' ¢4 in 2D (a) and 3D(b). All the data collapse

on the curve 1/(* Apx) with x=y7,(0).
1/Tb(;}’)51/7'b(0)+'/‘\b;}" (315)
obviously because of the high density of our system. In
where A,=0.57 in 2D and 0.80 in 3D. In the strong shear glassy states, such strings become longer and aggregate,
condition y7,(0)>1, jump motions are induced by shear on forming large-scale clusters. In 3D we also observe stringlike
the time scale of &. We shall see that the bond breakagejump motions in accord with Ref17] and aggregation of
occurs more homogeneously with increasing shear. Theresuch strings at low temperatures.

fore, it is natural that, when the strajp=yAt reaches 1, a  In _Fig. 7 we write the broken bonds in two consecutive
large fraction of bonds have been broken by shear. time intervals,[tg,to+0.05r,] and[ty+0.05r,,to+ 0.17]
atI';=1.4 andy=0. The clusters of broken bonds in the
IV. HETEROGENEITY IN BOND BREAKAGE two time intervals mostly overlap or are adjacent to one an-

other. This demonstrates thatakly bonded regionsr col-

Following the bond breakage process, we can visualizéectively rearranging region$CRR) follow complex space-
the kinetic heterogeneity without ambiguity and quantita-time evolution on the scales gfandr,. We do not know its
tively characterize the heterogeneous patterns. In Fig. 6 wevolution laws but will encounter a dynamical scaling law
show spatial distributions of broken bonds in a time intervalbetweené and 7, in Eq. (4.4) below.
of [tg,tp+0.05r,] in 2D, where about 5% of the initial We define the structure fact&;(q) of the broken bonds
bonds defined at=t, have been broken. The dots are theas
center position®;; = %[ri(t0)+rj(t0)] of the broken pairs at 1
the initial timet,. The broken bonds are seen to foolns- _ - e
ters with various sizes. The heterogeneity is marked in the S(@)= Nb< <,El> expia-Ryj)
glassy caséb) with I's¢=1.4 andy=0, whereas it is much
weaker for the liquid caséa) with I'ey=1 and y=0. The  where the summation is over the broken pdig,is the total
bond breakage time,, is 17 in(a) and 5<10% in (b). In (c) number of the broken bonds in a time interys},ty+ At],
we sety=0.25x 10" 2 andI' o= 1.4 with 7,=32~1/y. The  and the angular average over the direction of the wave vector
heterogeneity is known to become much suppressed blyas been taken. Furthermore, we have averaged over 5-50
shear, while its spatial anisotropy remains small. Notice tha$,(q) data calculated from sequential configurations of bro-
even in normal liquids, bond breakage events frequently ocken bonds. Figure 8 displays the result&gfq) after these
cur in the form of strings involving a few to several particles, averaging procedures on logarithmic scales at sevégal

2
> , 4.1
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FIG. 7. Broken bond distributions in two consecutive time in-
tervals,[ty,to+0.05r,] (O) and[ty+0.05r,,t;+0.17,] (@), at
I'er=1.4 in 2D. The arrow indicateé.

without shear. The enhancement$f(q) at smallq arises
from large-scale kinetic heterogeneities growing with in-
creasingl’ ¢ both in 2D and 3D. From a plot of $4(q)
versusg? in our previous reportgl3], we already found that
S,(q) can be nicely fitted to the Ornstein-Zernik@z) form:

Sh(A)=Su(0)/(1+ E%9°). 4.2

The correlation lengtly is determined from this expression.
It grows up to the system length at the lowest temperatures
and is insensitive to the width of the time interval as long
as it is considerably shorter than the bond breakage tigne
[13]. The agreement of ouB,(q) with the OZ form becomes
more evident in the plots &,(q)/S,(0) versugy¢ in Fig. 9,
in which all the data collapse onto a single OZ master curve
both in 2D and 3D. In particular, in 3D the deviations are
very small, althouglg~L for low T and smally in our case.
We also notice tha$,(q) is insensitive to the temperature
at largeq, so from the OZ form(4.2) we find

Sh(0)~ €. (4.3

The clusters of the broken bonds are thus very analogous to
the critical fluctuations in Ising spin systems. In fact, small-
scale heterogeneities with size the region XI<¢ are
insensitive to the temperature. The relat{drB) is analogous

to the relationy< &2~ 7 in Ising spin systems between the

FIG. 6. Snapshots of the broken bonds in 2D without and withmagnetic susceptibilitW:IiquOS(q) and the correlation

shear. The system length is 8 Herel' 4= 1 with weak hetero-
geneity(a), andI' = 1.4 with enhanced heterogeneity). For y

length ¢ near the critical point. Her&(q) is the spin struc-
ture factor andy is the Fisher critical exponent{1 in 3D).

=2.5x10 2 (c), the heterogeneity is much suppressed. The flow is Obviously,& represents the order of the maximum length
in the upward direction and the velocity gradient is in the horizontalof the clusters. However, Adam and Gibffs] intuitively
direction from left to right. The arrows indicate the correlation €xpected that theminimum size of CRR increases as

length ¢ obtained from Eq(4.2).

explconst/(T—T;)) on lowering T towardsT,. It has also
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In Fig. 10b) for 3D, however, we noticeg>L at I'

been discussed as to whether or not there is an underlying 1.50 and 1.55 for weak shear. At present we cannot assess

thermodynamic phase transition at a nonzero temperaire the influence of this finite-size effect.

in highly supercooled liquid$19-21. From our data we In a zeroth-order approximation, therefore, the kinetic

cannot detect any divergence €fat a nonzero temperature, heterogeneities are characterized by a single parareter,

although this is not conclusive due to the finite-size effect ; . . .
- T,, owing to the small space anisotropy induced by shear in
arising fromé&~L.

Furthermore, as in critical dynamics, we have confirmed alr systems. The shear rajeis apparently playing a role

dynamical scaling relation between the bond breakage timgm"{'i‘r;?e atwrga?er}gsgrﬂeleﬂtlenrrilenga?glrgestgf;emss'u-rheuri/’oo|ed
7, and the correlation lengts, p p

liquids, whileh and the reduced temperatureT.)/T. are
two relevant scaling fields in Ising systems.

Te=AE&, (4.9

V. SUPERCOOLED LIQUID RHEOLOGY

wherez=4 in 2D [41] andz=2 in 3D. The coefficienfis ~ We next examine nonlinear rheology _in our fluid mixtyres
independent ofl oy and ¥ chosen in our simulations, as I supercooled amorphous states. We_f|rst dlspla%/ in Fig. 11
shown in Figs. 1) and 1@b). Notice that the data points at the shear-dependent viscosiyy) (in units ofery/o7y) ver-

the largest in Fig. 10 are those at zero shear for edigh.  SUs y in steady states at variouSy in 2D and 3D. This

At present we cannot explain the origin of these simple numtheological behavior is similar to those in the experiments
bers forz. We may only argue that should be larger in 2D [24—26. The viscosity is much enhanced at largg; (low

than in 3D because of stronger configurational restrictions iff) and at low shear, but it tends to be independenT aft

2D. It is surprising that Eq4.4) holds even in strong shear Very high shear. Remarkably, glassy states exhibit large non-

y75(0)>1, where the correlation length is independenfof Newtonian behavior even whepis much smaller than the
and is determined by shear as microscopic frequency t4=1, whereas such large effects

are expected to appear only fgr- 1/7, in normal liquids far
from the critical poin{47,49.
£~y (4.5 In Fig. 12 we demonstrate that the viscosityy)
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FIG. 11. The viscosityp(y) in units of»sq-o/(r‘lj versus the shear
FIG. 10. Universal relation between the correlation lengfth) rate y in units of 1/ at variousl '« in 2D (a) and 3D(b). The data
in units of o; and the bond breakage timg(¥) in units of 74 in tend to become independentBf; at high shear.
Eqg.(2.2). In 2D (a), the line of the slope 4 is a viewing guide ahd
is the system length. The corresponding 3D plot is showfbjn  independent behaviaj(y)=(A,/Ap)/ ¥+ 7g, Which is evi-
with the slope being 2. dently seen in Fig. 11. If the background viscosity is negli-
gible, a constant limiting stress follows as
=o,sl7y is determined solely by the bond breakage time

Tb(;}I) in Eq (313 as Oxy= O-Iim:Ay]/Aba (53)
(V) =A,7(y)+ 78, (5.1)  which holds for
whereA, and ng are 0.34 and 6.25 in 2D, and 0.24 and 2.2 1/7,(0)< y<omin/ 7g~0.1/7. (5.9

in 3D, respectively. Because the linearijy: 7, is systemati-

cally violated at smallr,, the presence of the background Here, oy, is 0.59 in 2D and 0.30 in 3D in units &fla‘l“ and
viscosity »g independent ol and ¥ may be concluded. is typically a few percent of the pressure in our systems. The
Note that the effective exponenty(n)(d»/d¥y) remains upper bound in Eq(5.4) is very large in the usual glass-
about—0.8 in Fig. 11. As well as the kinetic heterogeneities,forming liquids but should be attainable in colloidal systems,
steady state rheology is determined only by a single paranwhile the lower bound can be very small with lowerifig
eter, 7, or & This suggests that a sheared steady state can be We will argue to derive the above behavior intuitively.
fairly mapped onto a quiescent state with a higher temperaSupercooled liquids behave as solids against infinitesimal

ture but with the samég. strain on time scales shorter thag(0) even if the tempera-
Substitution of Eq(3.15 then yields ture is considerably above the so-called glass transition tem-
perature. Fluidlike behavior is realized only after the bond
n( 'y)sAﬂ/[rb(O)‘1+Ab'y]+ 7B - (5.2 breakage processes. It is natural that the viscosity is of order

7p(0) in the linear regime. This is usually justified from the
This form coincides with the empirical la¢l.1) by Simons time correlation function expression for the viscosity in
et al. [24,25. Figure 13 shows that the rati¢n(¥y) terms of thexy component of the stress ten$db]. In strong
—ngl/[ 7(0)—ng] can be fitted to the universal curve 1/(1 shear, on the other hand, the bond breakage occurs on the
+ ApX) with x=y71,(0) independently of o« both in 2D and time scale of 1y. Upon each bond breakage induced by
3D. In strong sheafy,(0)>1, we have the temperature- shear, the particles involved release a potential enefgy
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(b). The (%) is determined byr,(¥) only irrespective of . (b). The solid curve is 1/(+ Apx) with x="y7,(0).
whose maximum ig. There should be a distribution ef , sions. We first plot in Fig. 14 the self-part of the density time

but let us assume,~ e for simplicity. It is then instanta- correlation function for variou$' ¢ in the usual zero shear
; .

neously changed into energies of random moti@msl prob- ~ condition,

ably sounds supported by the surrounding particles. The LM

heat transport is rapid in this dissipative process. Because of _ —

this and also because of the background thermal motions Fo(a.= N, Jz::l exia-Ar(] ),
superposed, we have not detected clear temperature inhomo-

geneities such dsot spotsaround broken bonds in our simu- where q= 2, Ar;(t)=r;(t)—r;(0), and thesummation is

lations. The heat production rate is estimated as taken over all the particles of the species 1. This function is
Q~nelTp(y)~ney, (5.9

wheren is the number density. Becaugkis related to the
viscosity byQ= o, y= 5(¥) ¥*, we obtain

(6.9

Oxy= n(y)y~ne (5.9

in high shear, s@,~ne. Due to disordered particle con-
figurations, however, it is natural to consider a distribution of
the released energy; , which will explain the viscosity be-
havior at lower shear. Such a distribution was calculated for
a model foam system in shear flow by Durig8].

VI. MOTION OF TAGGED PARTICLES

In this section we will follow the motion of tagged par-

ticles in a glassy matrix both in the absence and presence of FIG. 14. The self-part of the intermediate scattering function
shear in 3D. We will present results only in three dimen-F¢(q,t) atq=2# and y=0 in 3D. 'y increases from left.
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proportional to the(incoherenk scattering amplitude from
labeled particles. As is well known, this function has a pla-
teau at low temperatured’{z=1.45 in our casg during
which the particle is trapped in a cage. After a long time the
cage eventually breaks, resulting in diffusion with a very
small diffusion constanD. In this paper we define the
relaxation timer, such thatF¢(q,7,)=e ! atq=2.

We generalize the time correlation functid®.l) in the
presence of shear flow by introducing a new displacement
vector of thejth particle as

t
Arj(t)=fj(t)—'7f0dt’yj(t')ex—fj(0), (6.2)

10*
whereeg, is the unit vector in thex (flow) direction. In this t

displacement, the contribution from convective transport by
the average flow has been subtracted, which can be knoan
from the time derivative, n

FIG. 15. The time correlation functioR¢(qg,t) at g=2= de-
ed by Egs.(6.1) and (6.2 in shear flow, wherey=0, 104,
1073, 1072, and 10! from the right. The temperature is fixed at
J kgT/e=0.267 ["¢=1.5). Increasingy is equivalent to raising.
ST Ar(O=v;()—yy;(V&. (6.3 Thi , . , ,

is relation holds for an¥' o andy in our 3D simulations.

The decay oF4(q,t) is not exponential for large,,. If it is

To get a clear understanding of the meaning of this subtrac: . a
tion, let us consider a Brownian particle placed in shear rov(\:/f'tted to the stretched_exponentlal form Exg/7,)"] around
~1,, the exponena is increased from values about 0.8 to

as a simple example. On time scales longer than the relax- with increasingy as well as with raising. Furthermore
ation time of its velocity, its position(t) obeys the time correlation functiort6.1) has turned out to be al-
9 most independent of the direction of the wave vector
—r(t)=yy(t)e+f(t), (6.4 Next, it is convenient to analyze the mean square dis-
at
placement of tagged particles of the species 1,
where f(t) is the Gaussian random force characterized by 1 M
(f (D, (t")=2D6,,0(t—t") (u,v=x%,y,2). Then the Ar(H)12) = — Ar(£)12). 6.9
modified displacement vector reads (Lar®F ngl (a9 ©9

(., to Figure 17 shows the transition from the ballistic behavior
Ar(t)Er(t)—yfodt y(t )ex—r(0)=JOdt f(t"). (6.9  ([Ar(t)])=3(ksT/m)t2 to the diffusion behavior
([Ar(t)]?)=6Dt in shear flow atl’z=1.5. The arrows in

Here the convective effect does not appear explicitly and théhe figure indicate ther relaxation timer,(y). The diffu-

diffusion behavior follows as sion behavior is almost attainedtat 7, . Figure 18 demon-
strates the surprising isotropy of the statistical distribution of
(Ar(t)2)=6Dt. (6.6)  Ar(t), where the mean square displacements oktlyeand

) ) ) ) z components of the vectakr;(t) are separately displayed.
On the other hand, in the incoherent scattering amplitudeye can thus determin® from the mean square displace-
Ar;(t) in Eq. (6.1 should be taken as the net displacement

rj(t)—r;(0) even in shear flow. If},# 0, it strongly depends 10° . . . . .
on the thickness of the scattering region in thévelocity _
gradienj direction due to a position-dependent Doppler ef- 10° Feff_lljgg f; o
fect[23,50. Only for q,=0, it is proportional toF4(q,t) in 1.45 o o’
the above definition. 104 f;g v o _
Figure 15 shows-4(q,t) at =2 for variousy with a 1.15 o °

fixed temperaturel’=1.5 orkgT/e=0.267 in 3D. Com- & 10k e i
parison of this figure with Fig. 14 suggests that applying o
shear is equivalent to raising the temperature. Recall that we 1021 V@V 4
have made the same statement in analyzing the bond struc- &
ture factorS,(q) and the nonlinear rheology. Also, we may oL 8% |
define the shear-dependentrelaxation timer,= 7,(¥) by

0 ] ) 1 1 1

Fo(a,7,)=€"". (6.7 YT 10 10 18 10 10t 10°
Ta

In Fig. 16 we recognize that, is proportional to the bond
lifetime 7, as FIG. 16. The linear relationship betweep and 7, for various
't and y in 3D. The 7, is determined from the bond breakage
7,=0.17,. (6.8 (3.14), andr, from the decay of the time correlation functi¢®7).
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FIG. 17. The mean square displaf;emeljtz in sheanled states at F|G. 19. Shear rate dependences of the inverse diffusion con-
Iep=1.5. The shear ratg is 0, 10, 10°%, 10", and 10~ from  stantD and the viscosityy at the lowest temperatur® o= 1.55.

the right. Increasingy is equivalent to raising. The arrows indi-  The slope ofD ! is noticeably smaller than that of.
cate 7, for eachy. The diffusion(linean behavior is attained &t

~ Ty

In our casen/kgT changes over 4 decades urtiteaches
ment in addition tor,, in shear flow. Note that thecompo- ~ the system dimensioh, whereas it has been changed over
nent in Fig. 18 is not the usual mean square displacemer?t2 decade_s In t_he experimerit36,37. Though_ the_same
due to the second term in E6.2). In the Appendix we will tendency indicating the breakdown of the Einstein-Stokes

consider the variances of the net displacement veg{oy re_latlon has been Obt"?"ne.d in our simulation, we should ad-
—1,(0) mit that our system size in 3D is not yet sufficiently large
§(0).

nd our data af’¢=1.5 and 1.55 might be somewhat af-

ected by the system size effect. It is worth noting that the
Monte Carlo simulation of a dense polymer by Ray and
Binder [18] shows that the monomer diffusion constant de-
creases with increasing system size.

Figure 19 shows the shear rate dependences of the visc
ity » (~7,) and the inverse diffusion constabt ! from
the linear (=10 °) to the non-Newtonian regime &ty
=1.55 in 3D, whereD is measured in units csz/a-o and »
in units of erq/o$. We deduce the relatioB ~*~ %~ with
vr=0.75-0.80 in agreement of the experimgs], which is
appreciably milder than the viscosity decrease-r,
~y~1 In Fig. 20, we plotD versus 5/kgT (in units of
70/0%) obtained for varioug ¢ and . The Einstein-Stokes Most of our findings in this work have been obtained from
formula, which holds excellently in normal liquids, appearsnumerical analysis only without first-principles derivations.
to be violated in supercooled liquids as the other simulation®evertheless, we believe that they pose new problems and
have suggestedt0,41]. It is widely believed that this break- suggest new experiments. We make some discussions men-
down is a natural consequence of the dynamic heterogeneitioning possible experiments below.
in glassy state$36—38. Detailed numerical analysis will
appear in a forthcoming paper.

VIl. SUMMARY AND DISCUSSIONS
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FIG. 20. The diffusion constam versus the viscosity divided
FIG. 18. The mean square displacements ofithg andz com- by kgT for various "¢ and y. Here D is measured in units of
ponents. They are very close to one another even in strong sheaﬁr(}l and n/kgT in units of al‘dro. The solid line represents the
y7,(0)>1. This demonstrates surprising isotropy of the distribu- Einstein-Stokes formul® =kgT/27 7o, which agrees well with
tion of the displacement vectd6.2). the numerical data for/kgT=<10.
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(i) Introducing the concept of bond breakage, we havewvhich shear bands appgas known to be 2—-3 % of the
succeeded to quantitatively analyze the kinetic heterogenshear modulus.
ities in simple model systems, which have been witnessed by (Vi) Stillinger expected that in fragile glass-forming lig-
a number of the authors. As shown in Fig. 6, strings comYids shear flow occurs btear and repairof slipping walls
posed of broken bonds are very frequent and they aggregaféParating strongly bonded regiofig]. We have not ob-

at low temperatures to form clusters. The bond breakag&€'Ved such localization of slips or jump at least in our tem-
time 7, is related to the correlation lengthas Eq.(4.4). | Perature range. But there might be a tendency that broken
Ime 7, IS T g ! . gt S EQ.(4.4). In bonds form surfaces at low temperatures in 3D, though not
future work we should clarify the relationship of our pattemsconspicuous which should be checked in the future.

in the a relaxation apd those by Muranaka and Hiwafaii (viii) There is no tendency of phase separation for the
on a much shorter time scale. o parameters used. However, there are many cases in which

(i) The weakly bonded regions identified by the bondthe composition fluctuations are enhanced towards the glass
breakage are purely dynamical objects. Large-scale heteroggansition temperature. It is of great interest how the two
neities have not been clearly detected in snapshots of thgansitions influence each othig3,54. It is also known that
usual physical quantities such as the densities, the stress teshear flow can induce composition fluctuation enhancement
sor, the kinetic energy=temperaturg etc. On the other in asymmetric viscoelastic mixtures, when emergence of less
hand, in granular matters in shear fl§80], stress heteroge- viscous regions can reduce the effective visco2y]. We
neities have been observed optically by using birefringenexpect that this effect can come into play also in supercooled
materials. We admit the possibility that such stress heterogdiquids, for example, for large enough size ratios or in the
neities also exist in supercooled liquids but are masked bpresence of small attraction between the two components.
the thermal fluctuations. We will check this point in the fu- Experiments to detect this effect seem to be promising in
ture. colloidal systems.

(iii) It is of great interest how the kinetic heterogeneities,  (X) We have introduced the time correlation function
which satisfy the dynamic scaling.4), evolve in space and Fs(d:t) in shear and found its simple relaxation behavior in
time and why they look so similar to the critical fluctuations Fig. 15. It coincides with the usual time correlation function

in Ising systems in the mean field level. In our steady-statétﬁr ?lxzod_or v;/.hen E)he scgtterln({:}t vgctor IS pgrpe?dlpular: to
problemT and y are two relevant scaling fields, tloeitical f € flow Ic!lric on. .yr;amlct.scatercljn? ei(rt’r?”mﬁn S !nds ez:;r
point being located al = y=0. No divergence has been de- ow would be very informative to detect the shear-induce

tected at a nonzero temperature in our simulations. diffusion [23]. A direct diffusion measurement in sheared

(iv) In his experiments, Fischd61] has reported large supercooled fluids, which will be analyzed in the Appendix,

excess light scattering with a correlation length is also very interesting. Though our system size is still too

. : : mall, we have detected a tendency of the breakdown of the
¢ (20-200 nm) that increases on approaching the glas|§:instein-Stokes relation in 3D to obtaiD~ 7~ with v

transition from a liquid state. This indicates the presence 0_0 75-0.8
very large-scalalensity heterogeneities in supercooled lig- — = '~ > L
uids, which is often called Fischer's clusters. Motivated by, (x) In strong shear _the structural rel_axatlor_1 is character-
this effect, Webeet al. [52] performed Monte Carlo simu- 126d by 7,~0.17,~0.1/y as Eq.(6.8). This nonlinear effect

lations on a dense polymer and found that short-range nenfould be measured as a drastic reduction of the rotational

atic orientational order can give rise to enhancement of |Ong[elaxat|on tlme by dielectric response or by more Sf°p_h'5t"
ated techniquep36,37 from sheared supercooled liquids.

range dgn§ity flu_ctuations. They (.ax.pecteq that sucfi_he same effect is expected for periodic shear flow
anisotropic interactions cquld be the origin of Flscher’s plu_s— (xi) Understandin t?ansient mzchanical ros onsé in terms
ters. This suggests that Fischer’s clusters do not exist in lig- T g transien ! p

of the kinetic heterogeneities is of great importance. For ex-

uids composed of structureless particles. b
(v) We have examined nonlinear rheology in glassyample’ we have found a stress overshoot after application of
ear strain in accord with the experimenst,25. We

states. The rheological relations obtained are simplest amorﬁ: .
g P ould also understand glassy behavior of the complex shear

those consistent with the experimef#l—26. The mecha- aul . Il periodic shé8El. We will
nism of the non-Newtonian behavior in supercooled quuidsmo ulus against small periodic s ¢86]. We will report on
these topics shortly.

is conceptually new and should be further examined in ex=" "% -
(xii) In our systems, we have not yet found essential dif-

periments such as in colloidal systems in glassy states. | . )
particular, polymers should exhibit pronounced non_Perences between ZD and 3D except for the dlffgrence in the
: P Jyalue of the dynamic exponentn Eg. (4.4). We believe that

even without entanglement. Rheology of chain systems red 1arge part of the essential ingredients of glassy dynamics

mains totally unexplored near the glass transition. can p__e understood even in two d'mens'ons' .
(vi) In our systems, small anisotropic changes of the pair (xiii) In a forthcoming paper, we will focus our attention

correlation functiong,z(r) near the first peak<€o,z) can on jump motions of particles over distances Ion_ger than
give rise to the limiting shear stress;., , which is 3—5 % of They will be shown to occur heterogeneously in space and

the pressure in our case. Note that our systems are high termine the diffusion constant. These .heterogeneity struc-
compressed with high pressure. However, the pressure ne es are essem'a”.y th(’." same as those in the bond breakage
not be very high in supercooled liquids in the presence of afrocesses studied in this paper.

attractive part of the potential. Even in such cases, we expect
that o, is a few percent of the shear modulus. This is sug-
gested by the previous work on amorphous allp3%—35, We thank Dr. T. Muranaka, Professor M. Y. Hiwatari,
where the yield stress in the inhomogeneous cagin Professor K. Kawasaki, Professor P. Harrowell, Dr. D. Per-
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era, and Professor A.J. Liu for helpfgl discu;sions. Thank§ G(t)=<[yj(t)—yj(O)]2>=([zj(t)—zj(O)]2>. (A2)
are also due to Professor S. Takeuchi, who kindly sent us his
work on amorphous alloys. This work is supported by aThe variance of the& component then becomes
Grant-in-Aid for Scientific Research from the Ministry of .
Education, Science and Culture. Calculations have been car : 2\ : zf

' Xi(t) —%;(0)— yt =G(t)+2 dt;(t—t1)G(tq).
ried out at the Supercomputer Laboratory, Institute for X0 =x(0)= MyolH=G(V) +2y 0 (t=t)G(t)

Chemical Research, Kyoto University and the Computer (A3)
Center of the Institute for Molecular Science, Okazaki, Ja- ] ]
pan. The cross correlation exists between shandy components
as
APPENDIX

t
([x () =x;(O)]Ly; (D~ y;(0)]) = '7’f0dt1G(t1)- (A4)

Let us calculate the variances among xhg, andz com-
ponents,x;(t) —x;(0), y;(t)—y;(0), andz(t)—z(0), of
the net displacement vectg(t) —r;(0) of thejth particle in  In the diffusion time regimeé= 7, we may seG(t) =2Dt to
shear flow. We fix its initial positionr;(0) at r,  obtain

=(Xg,Y0,Zp)- The average displacement arises from the con- , .
vection as ([x(t)=x;(0) = ¥tyo]?)=2Dt(1+3%°t?),  (A5)

(r;(D)=1,(0)) = ¥tyo; (A1) ([0 =X (0)I[y;(D—y, (=D (A6)

Assuming the isotropy of the subtracted displacen{éri?), Note thatD is strongly dependent ofy in strong shear as
which is suggested by Fig. 18, we may write the variances o§hown in Fig. 19. Measurements of the above variances are

they andz components as very informative.
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