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Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion

Ryoichi Yamamoto and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 20 March 1998!

Highly supercooled liquids with soft-core potentials are studied via molecular-dynamics simulations in two
and three dimensions in quiescent and sheared conditions. We may define bonds between neighboring particle
pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural
rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature
T. The bond lifetimetb , which depends onT and the shear rateġ, is on the order of the usual structural ora
relaxation timeta in weak shearġta!1, while it decreases as 1/ġ in strong shearġta@1 due to shear-
induced cage breakage. Accumulated broken bonds in a time interval (;0.05tb) closely resemble the critical
fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike
form, which yields the correlation lengthj representing the maximum size of the clusters composed of broken
bonds. We also find a dynamical scaling relation,tb;jz, valid for anyT and ġ with z54 in two dimensions
andz52 in three dimensions. The viscosity is of ordertb for anyT andġ, so marked shear-thinning behavior
emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine motion of tagged
particles in shear in three dimensions. The diffusion constant is found to be of ordertb

2n with n50.75;0.8 for
any T and ġ, so it is much enhanced in strong shear compared with its value at zero shear. This indicates a
breakdown of the Einstein-Stokes relation in accord with experiments. Some possible experiments are also
proposed.@S1063-651X~98!16409-7#

PACS number~s!: 64.70.Pf, 83.50.Gd, 61.43.Fs
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I. INTRODUCTION

Particle motions in supercooled liquids are severely
stricted or jammed, thus giving rise to slow structural rela
ations and highly viscoelastic behavior@1,2#. Recently much
attention has been paid to the mode-coupling theory@3,4#,
which is an analytic scheme describing the onset of s
structural relaxations considerably aboveTg . There, the den-
sity fluctuations with wave numbers around the first pe
position of the structure factor are of the most importan
and no long-range correlations are predicted. For a long ti
however, it has been expected@5–8# that rearrangements o
particle configurations in glassy materials should be coop
tive, involving many molecules, owing to configuration r
strictions. In other words, such events occur only in the fo
of clusterswhose sizes increase at low temperatures. In n
mal liquid states, on the contrary, they are frequent and
correlated among one another in space and time. Suc
idea was first put forth by Adam and Gibbs@5#, who in-
vented a frequently used jargon,cooperatively rearranging
regions~CRR!. However, it is difficult to judge whether o
not such phenomenological models are successful in des
ing real physics and in making quantitative predictions.

Molecular-dynamics~MD! simulations can be powerfu
tools to gain insights into relevant physical processes
highly supercooled liquids. Such processes are often ma
in averaged quantities such as the density time correla
functions. As a marked example, we mention kinetic hete
geneities observed in recent simulations@9–18#. Using a
simple two-dimensional fluid, Muranaka and Hiwatari@9#
visualized significant large-scale heterogeneities in part
displacements in a relatively short time interval, which w
supposed to correspond to theb relaxation time regime. In
liquid states with higher temperatures, Hurley and Harrow
PRE 581063-651X/98/58~3!/3515~15!/$15.00
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@11# observed similar kinetic heterogeneities but the corre
tion length was still on the order of a few particle diamete
The characterization of these patterns has not been mad
these papers. Recently our simulations on model fluid m
tures in two and three dimensions@13–15# have identified
weakly bondedor relatively activeregions from breakage o
appropriately defined bonds. Spatial distributions of such
gions resemble the critical fluctuations in Ising spin system
so the correlation lengthj can be determined. It grows up t
the system size asT is lowered, but no divergence seems
exist at nonzero temperatures@13,19–21#. Donatiet al. have
observedstringlike clusters whose lengths increase at lo
temperatures in a three-dimensional~3D! binary mixture
@17#. In addition, Monte Carlo simulations of a dense po
mer by Ray and Binder showed a significant system s
dependence of the monomer diffusion constant, which in
cates heterogeneities over the system size@18#.

Most previous papers so far have been concerned w
near-equilibrium properties, such as relaxation of the den
time correlation functions or dielectric response. From o
point of view, these quantities are too restricted or indire
and there remains a rich group of unexplored problems
far-from-equilibrium states. For example, nonlinear glas
response against electric field, strain, etc. constitutes a fu
problem @22#. In this paper we apply a simple shear flo
vx5ġy in the x direction and realize steady states@23#. The
velocity gradientġ in the y direction is called the shear rat
or simply shear. We shall see that it is a relevant perturba
drastically changing the glassy dynamics whenġ exceeds the
inverse of the structural ora relaxation timeta . As is well
known, ta increases dramatically from microscopic to ma
roscopic times in a rather narrow temperature range@1,2#.
Generally, in near-critical fluids and various complex fluid
nonlinear shear regimes are known to emerge whenġ ex-
3515 © 1998 The American Physical Society
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3516 PRE 58RYOICHI YAMAMOTO AND AKIRA ONUKI
ceeds some underlying relaxation rate@23#. However, in su-
percooled liquids, it is unique that even very small shear
greatly accelerate themicroscopicrearrangement processe
Similar effects are usually expected in systems compose
very large elements such as colloidal suspensions.

Though rheological experiments on glass-forming flu
have not been abundant, Simmonset al. found that the vis-
cosityh(ġ)5sxy /ġ exhibits strong shear-thinning behavio

h~ġ!>h~0!/~11ġth!, ~1.1!

in soda-lime-silica glasses in steady states under shear@24–
26#, th being a long rheological time. After application o
shear, they also observed overshoots of the shear stres
fore approach to steady states. Our previous reports@14,15#
have treated nonlinear rheology in supercooled liquids
agreement with these experiments. Interestingly, similarjam-
ming dynamicshas begun to be recognized also in rheolo
of foams@27–29# and granular materials@30# composed of
large elements. Shear-thinning behavior and heterogene
in configuration rearrangements are commonly observed
in these macroscopic systems.

As a closely related problem, understanding of mecha
cal properties of amorphous metals such as Cu57Zr43 has
been of great technological importance@31–35#. They are
usually ductile in spite of their high strength. At low tem
peraturesT&0.6;0.7Tg , localized bands (&1 mm), where
zonal slip occurs, have been observed above a yield st
At relatively high temperaturesT*0.6;0.7Tg , on the other
hand, shear deformations are inducedhomogeneously~on
macroscopic scales! throughout samples, giving rise to vis
cous flow with strong shear thinning behavior. In particul
in their 3D simulations, Takeuchiet al. @34,35# followed
atomic motions after application of a small shear strain
observe heterogeneities amongpoorly and closely packed
regions, which are essentially the same entities we have
cussed. Our simulations under shear in this paper corresp
to thehomogeneousregime at relatively high temperatures
amorphous metals.

Another interesting issue is as follows. Several expe
ments have revealed that the translational diffusion cons
D of a tagged particle in a fragile glassy matrix becom
increasingly larger than the Einstein-Stokes valueDES
5kBT/2pha with lowering T, whereh is the ~zero-shear!
viscosity anda is the diameter of the particle@2,36–38#. In
particular, the power-law behaviorD}h2n with n>0.75
was observed at sufficiently low temperatures@36#. Thus
D/DES increases from of order 1 up to order 102–103 in
supercooling experiments. Furthermore, smaller probe
ticles exhibit a more pronounced increase of the ra
Dh/T}D/DES with loweringT @37#. It is generally believed
that h is proportional to thea relaxation timeta or the
rotational relaxation time 1/D rot for anisotropic molecules
(D rot being the rotational diffusion constant! @36,37,39#.
Therefore, individual particles are much more mobile at lo
timest*ta than expected from the Stokes-Einstein formu
In a MD simulation on a 3D binary mixture withN5500 in
3D @40#, the same tendency was apparently seen despite
small system size. Very recently, in a MD simulation in a 2
binary mixture withN51024, Perera and Harrowell hav
observed clear deviation from the linear relationD}ta ,
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whereta is obtained from the decay of the time correlatio
function as in our case in Sec. VI@41#. We will examine this
problem in a much larger 3D system withN5N11N2
5104 generally in the presence of shear, where the visco
and the diffusion constant both vary tremendously in stro
shear (ġ*1/ta).

The organization of this paper is as follows. In Sec. II, o
model binary mixtures and our simulation method will b
explained. In Sec. III,bondsamong particle pairs will be
introduced at distances close to the first peak position of
pair correlation functions. Breakage of such bonds will th
be followed numerically, which exhibits heterogeneities e
hanced at low temperatures. Their analysis will yield t
correlation length in Sec. IV. Rheology of supercooled l
uids will be studied in Sec. V. These effects were brie
reported in our previous reports@13–15#. In Sec. VI, results
on the motion of tagged particles will be presented.

II. MODEL AND SIMULATION METHOD

We performed MD simulations in two dimensions~2D!
and three dimensions~3D! on binary mixtures composed o
two different atomic species, 1 and 2, withN15N255000
particles with the system volumeV being fixed. Parameter
chosen are mostly common in 2D and 3D. They interact
the soft-core potential@9–15,41–43#,

vab~r !5e~sab /r !12, sab5
1

2
~sa1sb!, ~2.1!

where r is the distance between two particles anda,b
51,2. The interaction is truncated atr 54.5s1 in 2D andr
53s1 in 3D. The leapfrog algorithm is used to integrate t
differential equations with a time step of 0.005t0 , where

t05~m1s1
2/e!1/2. ~2.2!

The space and time are measured in units ofs1 andt0 . The
mass ratio ism2 /m152, while the size ratio is

s2 /s151.4 ~d52!, s2 /s151.2 ~d53!, ~2.3!

where d is the space dimensionality. This size differen
prevents crystallization and produces amorphous state
our systems at low temperatures.

We fixed the particle density at

n50.8/s1
d , ~2.4!

where n5n11n2 is the total number density. The syste
linear dimension isL5118 in 2D andL523.2 in 3D. Then
our systems are highly compressed. In fact, the volume f
tion of the particles may be estimated asp(s1

2n11s2
2n2)

50.93 in 2D and as4
3 p(s1

3n11s2
3n2)50.57 in 3D, where

overlapped regions are doubly counted. In such cases,
cording to the Henderson and Leonard theory@43–45#, our
binary mixtures may be fairly mapped onto one-compon
fluids with the soft-core potential with an effective radiu
defined by

seff
d 5 (

a,b51,2
xaxbsab

d , ~2.5!



th
ct

,

e
a

lin

on
p-
in

on

se
r-

a

t
ir
ts
tial
for
-

ery
was

in
time
es,

se

res-

con-
No
and

hod
for

red

ee-

at
re
A

4

PRE 58 3517DYNAMICS OF HIGHLY SUPERCOOLED LIQUIDS: . . .
wherex15n1 /n andx25n2 /n512x1 are the compositions
of the two components and are 1/2 in our case. As in
one-component case, the thermodynamic state is chara
ized by a single parameter~effective density!,

Geff5n~e/kBT!d/12seff
d . ~2.6!

For example, Bernuet al. @43# confirmed that the equilib-
rium pressurep may be well fitted to the scaling form
p/nkBT21>616.848(Geff)

4, at all x1 in 3D. In Tables I
and II we listGeff chosen in our simulations together with th
corresponding scaled temperatures and pressures in 2D
3D. Our pressure data agree very well with the above sca
form for 3D.

We introduce here the pair correlation functionsgab(r )
by

^n̂a~r!n̂b~0!&5nanbgab~r !1nadabd~r!, ~2.7!

where

n̂a~r!5(
j

d~r2ra j ! ~a51,2! ~2.8!

are the number densities in terms of the particle positi
ra j (a51,2,j 51, . . . ,N/2). The time dependence is su
pressed for simplicity. In a highly compressed state the
terparticle distances between thea andb particles are char-
acterized by

l ab5sab~e/kBT!1/12. ~2.9!

The last factor (e/kBT)1/12 represents the degree of expulsi
or penetration from or into the soft-core regions (r ,sab) on
particle encounters, though it is not far from 1 in our ca
The one-fluid approximation may be justified if the pair co
relation functions satisfy

gab~r !5G~r / l ab ,Geff!. ~2.10!

Namely,gab(r ) are independent ofa, b, andx1 once the
distance is scaled byl ab . The pressure is then expressed
@45#

TABLE I. Simulations in 2D.

Geff 1.0 1.1 1.2 1.3 1.4

kBT/e 2.54 1.43 0.85 0.526 0.337
p/nkBT21 15.1 22.6 33.5 50.2 75.1

TABLE II. Simulations in 3D.

Geff 1.15 1.3 1.4 1.45 1.5 1.55

kBT/e 0.772 0.473 0.352 0.306 0.267 0.23
p/nkBT21 18.9 26.7 33.4 37.2 41.4 46.3
e
er-

nd
g

s

-

.

s

p

nkBT
2152

n

2dkBT(
a,b

E drxaxbvab8 ~r !rgab~r !

56VdGeffE
0

`

ds
1

s132d
G~s,Geff!, ~2.11!

wherevab8 (r )5dvab(r )/dr and Vd is the volume of a unit
sphere, so it is 4p/3 in 3D andp in 2D. We shall see tha
Eq. ~2.10! holds very well around the first peak of the pa
correlation functions in our simulations. This fairly suppor
the one-fluid approximation, because the soft-core poten
and the pair correlation functions decrease very abruptly
r * l ab and for r & l ab , respectively, and the dominant con
tribution arises fromr; l ab;sab .

In our systems the structural relaxation time becomes v
long at low temperatures. Therefore, the annealing time
taken to be at least 105 in 2D and 104 in 3D. No appreciable
aging effect was detected in the course of taking data
various quantities such as the pressure or the density
correlation function except for the lowest temperature cas
Geff51.4 in 2D andGeff51.55 in 3D. A small aging effect
remained in the density time correlation function in the
exceptional cases, however.

Our simulations were performed in the absence and p
ence of shear flow@46,47#. In the unsheared case (ġ50) we
performed simulations under the microcanonical~constant
energy! condition. However, in the sheared case (ġ.0), we
kept the temperature at a constant using the Gaussian
straint thermostat to eliminate the viscous heating effect.
difference was detected between the profile-based
profile-unbased thermostats@47#, so results with the profile-
based thermostat will be presented in this paper. Our met
of applying shear is as follows: The system was at rest
t,0 for a very long equilibration time and was then shea
for t.0. Here we added the average velocityġy to the ve-
locities of all the particles in thex direction at t50 and
afterwards maintained the shear flow by using the L

FIG. 1. A typical particle configuration and the bonds defined
a given time atGeff51.4 in 2D. The diameters of the circles here a
equal tosa . The areal fraction of the soft-core regions is 93%.
1/16 of the total system is shown.
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Edwards boundary condition@46,47#. Then steady state
were realized after a transient time. In our case shear fl
serves to destroy glassy structures and produces no l
range structure.

III. PAIR CORRELATIONS AND BOND BREAKAGE

A. Pair correlations

Because of the convenience of visualization in 2D,
first present a snapshot of particles atGeff51.4 in 2D in Fig.
1, which gives an intuitive picture of the particle configur
tions. We can see that each particle is touching mostly
particles and infrequently five particles at distances clos
sab(51.09521l ab). Similar jammed particle configuration
can also be found in 3D, where the coordination numbe
other particles around each particle is about 12. Then
natural that the pair correlation functionsgab(r ) (a,b
51,2) have a very sharp peak atr >sab , as displayed in
Fig. 2 forGeff51.4 in 2D andGeff51.55 in 3D. Furthermore
the heights of these peaks are all close to 7 in 2D and
3D. This confirms the scaling form~2.10! around the first
peak.

We introduce a density variable representing the degre
particle packing by

r̂eff~r!5s1
dn̂1~r!1s2

dn̂2~r!, ~3.1!

FIG. 2. The pair correlation functionsgab(r ) in quiescent states
as functions ofr /sab at Geff51.4 in 2D~a! and atGeff51.55 in 3D
~b!.
w
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e
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in terms of which the local volume fraction of the soft-co
regions ispr̂eff(r) in 2D and by (4p/3)r̂eff(r) in 3D. We
also consider the local composition fluctuation,

dX̂~r!5
1

n
@x2n̂1~r!2x1n̂2~r!#, ~3.2!

wherex15x251/2 in our case. In Fig. 3 we show the corr
sponding, dimensionless structure factors,

Srr~q!5s1
2dE dreiq•r^dr̂eff~r!dr̂eff~0!&, ~3.3!

SrX~q!5s1
2dE dreiq•r^dr̂eff~r!dX̂~0!&, ~3.4!

SXX~q!5s1
2dE dreiq•r^dX̂~r!dX̂~0!&, ~3.5!

where dr̂eff5 r̂eff2^r̂eff&. They are linear combinations o
the usual structure factors,

Sab~q!5nanbE dreiq•r@gab~r !21#, ~3.6!

from the definitions~3.1! and~3.2!. The temperatures in Fig
3 are common to those in Fig. 2. Note that the dimension

FIG. 3. The structure factorsS(q) defined in Eqs.~3.3!–~3.5! in
quiescent states atGeff51.4 in 2D ~a! and atGeff51.55 in 3D~b!.
The dimensionless wave numberq is measured in units ofs1

21 .
The solid, dashed, and dotted lines correspond toreff-reff , X-X, and
reff-X correlations, respectively.
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wave numberq is measured in units ofs1
21 . TheSrr(q) has

a pronounced peak atq;6 and becomes very sma
(;0.01) at smallerq both in 2D and 3D. In this sense ou
systems are highly incompressible at long wavelengths.
the other hand,SXX(q) has no peak and is roughly a consta
over a very wideq region, suggesting no enhancement of t
composition fluctuations and no tendency of phase sep
tion at least in our simulation times.

From Fig. 3 we may estimate the magnitude of the i
thermal compressibilityKTX5(]n/]p)TX /n. In equilibrium
it is expressed in terms of the fluctuation variances as

kBTKTX5n24 lim
q→0

@S11~q!S22~q!2S12~q!2#/SXX~q!

5
s1

d

~s1
dn11s2

dn2!2
lim
q→0

@Srr~q!2SrX~q!2/SXX~q!#.

~3.7!

The first line was the expression in Ref.@48#, and the second
line follows if use is made of Eqs.~3.1! and ~3.2!. The di-
mensionless combinationnkBTKTX is equal to 0.0028 in 2D
and 0.0067 in 3D. If we assume that the adiabatic compr
ibility KsX5(]n/]p)sX /n is of the same order asKTX , the
sound speedc turns out to be of order 10 in units ofs1 /t0 .

Our structure factors were obtained by time averag
over very long times, which are 105 for 2D and 104 for 3D.
However, irregular shapes ofSXX(q) persisted at long wave
lengthsq&1. Such large-scale composition fluctuations ha
very long lifetimes (@ta) and are virtually frozen through
out the simulation. Therefore, we admit the possibility th
our supercooled states at low temperatures might ph
separate to form crystalline regions on much longer ti
scales. On the contrary, the long-wavelength fluctuation
r̂eff have much shorter time scales; probably they vary
acoustic time scales;1/cq.

As is well known, the temperature dependence of
static pair correlation functions is much milder than that
the dynamical quantities. Similarly, their shear dependenc
also mild even forġta@1 as long asġ!1. In particular,
their spatially anisotropic part is at most a few percent
their isotropic part around the first peak positionsr >sab in
our case. This is consistent with the fact that the attai
shear stress in our simulations is at most a few percent o
particularly high pressurep of our systems. Note that th
average shear stresssxy in sheared steady states may
related to the steady-state pair correlation functionsgab(r)
as @45#

sxy52
1

2(a,b
nanbE drvab8 ~r !

r xr y

r
gab~r!, ~3.8!

wherer x and r y are thex andy components of the vectorr
connecting particle pairs. The dominant contribution h
arises from the anisotropy atr >sab .

B. Bond breakage

Because of the sharpness of the first peak ofgab(r) in our
systems, we can unambiguously definebondsbetween par-
ticle pairs at distances close tosab in the absence and pres
n
t
e
a-

-

s-
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e
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e
of
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f
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ence of shear. Such bonds will be broken on the struct
(a) relaxation time, because the bond breakage takes p
on local configurational rearrangements. We define
bonds as follows. For each atomic configuration given
time t0 , a pair of particlesi andj is considered to be bonde
if

r i j ~ t0!5ur i~ t0!2r j~ t0!u<A1sab , ~3.9!

where i and j belong to the speciesa and b, respectively.
We have setA151.1 for 2D and 1.5 for 3D. The resultan
bond numbers betweena andb pairs,Nbab , are related to
the first peak structure ofgab(r ) as follows. We consider the
coordination numbernab of b particles around ana particle
within the distanceA1sab @43#,

nab5nbE
r ,A1sab

drgab~r !;Cnbsab
d , ~3.10!

whereC is about 5 in 2D and 12 in 3D. Then we simply hav

Nbaa5
1

2
Nanaa ~a51,2!, Nb125

1

2
N1n121

1

2
N2n21.

~3.11!

In 2D at Geff51.4, we findn1152.19, n125n2152.54, and
n2253.41, which are consistent with the bond numbe
Nb1155514, Nb11513 135, andNb2258436, counted in a
simulation. In 3D at Geff51.55, these numbers aren11
55.57,n125n2156.90, andn2258.30, which are again con
sistent withNb11513 925,Nb11534 476, andNb22520 744
in a simulation. We stress that our bond definition is inse
sitive toA1, owing to the sharpness of the first peak, as lo
as it is somewhat larger than 1 and smaller than the sec
peak distances divided bysab .

After a lapse of timeDt, a pair is regarded to have bee
broken if

r i j ~ t01Dt !.A2sab ~3.12!

with A251.6 for 2D and 1.5 for 3D. This definition of bon
breakage is also insensitive toA2 as long asA2>A1 and
A2sab is shorter than the second peak position ofgab(r ).
We have followed the relaxation of the total surviving~un-
broken! bondsNbond(Dt) from the initial number

Nbond~0!5Nb111Nb121Nb22 ~3.13!

to zero with increasingDt. No significant difference has
been found between the bond breakage processes of the
kinds of bonds, 1-1, 1-2, and 2-2, so we consider their s
only. We define the bond breakage timetb by

Nbond~tb!5Nbond~0!/e. ~3.14!

The relaxation is not simply exponential at low temperatur
apparently because of large-scale heterogeneities comp
of relatively weakly and strongly bonded regions. If we
Nbond(Dt) to the stretched exponential form,Nbond(Dt)
;exp@2(Dt/tb)

a8#, the exponenta8 is close to 1 at relatively
high temperatures but is considerably smaller than 1 at
lowest temperatures~for example,a8;0.6 at Geff51.55 in
3D!.
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In Fig. 4 we show the bond breakage timetb5tb(T) in
the absence of shear as a function of the temperatur
grows strongly with decreasing the temperature. As will
shown in Eq.~6.8! in Sec. III, the bond breakage timetb is
proportional to thea relaxation timeta obtained from the
decay of the self-part of the time correlation functionFs(q,t)
at q52p. The shear dependence of the bond breakage
tb5tb(ġ) is also of great interest. As shown in Fig. 5, th
bond breakage rate 1/tb(ġ) consists of the thermal breakag
rate 1/tb(0) strongly dependent onT and a shear-induce
breakage rate proportional toġ. It is expressed in the sim
plest conceivable form,

1/tb~ ġ !>1/tb~0!1Abġ, ~3.15!

whereAb50.57 in 2D and 0.80 in 3D. In the strong she
conditionġtb(0).1, jump motions are induced by shear o
the time scale of 1/ġ. We shall see that the bond breaka
occurs more homogeneously with increasing shear. Th
fore, it is natural that, when the straing5ġDt reaches 1, a
large fraction of bonds have been broken by shear.

IV. HETEROGENEITY IN BOND BREAKAGE

Following the bond breakage process, we can visua
the kinetic heterogeneity without ambiguity and quanti
tively characterize the heterogeneous patterns. In Fig. 6
show spatial distributions of broken bonds in a time inter
of @ t0 ,t010.05tb# in 2D, where about 5% of the initia
bonds defined att5t0 have been broken. The dots are t
center positionsRi j 5

1
2 @r i(t0)1r j (t0)# of the broken pairs a

the initial time t0 . The broken bonds are seen to formclus-
ters with various sizes. The heterogeneity is marked in
glassy case~b! with Geff51.4 andġ50, whereas it is much
weaker for the liquid case~a! with Geff51 and ġ50. The
bond breakage timetb is 17 in ~a! and 53104 in ~b!. In ~c!
we setġ50.2531022 andGeff51.4 with tb532;1/ġ. The
heterogeneity is known to become much suppressed
shear, while its spatial anisotropy remains small. Notice t
even in normal liquids, bond breakage events frequently
cur in the form of strings involving a few to several particle

FIG. 4. Temperature dependence of the bond breakage
tb(0) at zero shear (d) in 2D and (L) in 3D. Thee is the poten-
tial parameter in the soft-core potentials~2.1!. The time is measured
in units of t0 in Eq. ~2.2!, so tb(0) is dimensionless.
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obviously because of the high density of our system.
glassy states, such strings become longer and aggre
forming large-scale clusters. In 3D we also observe string
jump motions in accord with Ref.@17# and aggregation of
such strings at low temperatures.

In Fig. 7 we write the broken bonds in two consecuti
time intervals,@ t0 ,t010.05tb# and @ t010.05tb ,t010.1tb#
at Geff51.4 andġ50. The clusters of broken bonds in th
two time intervals mostly overlap or are adjacent to one
other. This demonstrates thatweakly bonded regionsor col-
lectively rearranging regions~CRR! follow complex space-
time evolution on the scales ofj andtb . We do not know its
evolution laws but will encounter a dynamical scaling la
betweenj andtb in Eq. ~4.4! below.

We define the structure factorSb(q) of the broken bonds
as

Sb~q!5
1

Nb
K U(

^ i , j &
exp~ iq•Ri j !U2L , ~4.1!

where the summation is over the broken pairs,Nb is the total
number of the broken bonds in a time interval@ t0 ,t01Dt#,
and the angular average over the direction of the wave ve
has been taken. Furthermore, we have averaged over 5
Sb(q) data calculated from sequential configurations of b
ken bonds. Figure 8 displays the resultantSb(q) after these
averaging procedures on logarithmic scales at severalGeff

e

FIG. 5. The normalized bond breakage timetb(ġ)/tb(0) versus
ġtb(0) for variousGeff in 2D ~a! and 3D~b!. All the data collapse
on the curve 1/(11Abx) with x5ġtb(0).
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FIG. 6. Snapshots of the broken bonds in 2D without and w
shear. The system length is 118s1 . HereGeff51 with weak hetero-
geneity ~a!, and Geff51.4 with enhanced heterogeneity~b!. For ġ
52.531022 ~c!, the heterogeneity is much suppressed. The flow
in the upward direction and the velocity gradient is in the horizon
direction from left to right. The arrows indicate the correlatio
lengthj obtained from Eq.~4.2!.
without shear. The enhancement ofSb(q) at smallq arises
from large-scale kinetic heterogeneities growing with
creasingGeff both in 2D and 3D. From a plot of 1/Sb(q)
versusq2 in our previous reports@13#, we already found that
Sb(q) can be nicely fitted to the Ornstein-Zernike~OZ! form:

Sb~q!5Sb~0!/~11j2q2!. ~4.2!

The correlation lengthj is determined from this expression
It grows up to the system length at the lowest temperatu
and is insensitive to the width of the time intervalDt as long
as it is considerably shorter than the bond breakage timetb
@13#. The agreement of ourSb(q) with the OZ form becomes
more evident in the plots ofSb(q)/Sb(0) versusqj in Fig. 9,
in which all the data collapse onto a single OZ master cu
both in 2D and 3D. In particular, in 3D the deviations a
very small, althoughj;L for low T and smallġ in our case.

We also notice thatSb(q) is insensitive to the temperatur
at largeq, so from the OZ form~4.2! we find

Sb~0!;j2. ~4.3!

The clusters of the broken bonds are thus very analogou
the critical fluctuations in Ising spin systems. In fact, sma
scale heterogeneities with sizesl in the region 1! l !j are
insensitive to the temperature. The relation~4.3! is analogous
to the relationx}j22h in Ising spin systems between th
magnetic susceptibilityx5 limq→0S(q) and the correlation
lengthj near the critical point. HereS(q) is the spin struc-
ture factor andh is the Fisher critical exponent (!1 in 3D!.

Obviously,j represents the order of the maximum leng
of the clusters. However, Adam and Gibbs@5# intuitively
expected that theminimum size of CRR increases a
exp„const/(T2T0)… on loweringT towardsT0 . It has also

h

s
l

FIG. 7. Broken bond distributions in two consecutive time i
tervals,@ t0 ,t010.05tb# (h) and @ t010.05tb ,t010.1tb# (d), at
Geff51.4 in 2D. The arrow indicatesj.
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3522 PRE 58RYOICHI YAMAMOTO AND AKIRA ONUKI
been discussed as to whether or not there is an underl
thermodynamic phase transition at a nonzero temperaturT0
in highly supercooled liquids@19–21#. From our data we
cannot detect any divergence ofj at a nonzero temperature
although this is not conclusive due to the finite-size eff
arising fromj;L.

Furthermore, as in critical dynamics, we have confirme
dynamical scaling relation between the bond breakage t
tb and the correlation lengthj,

tb>Ajz, ~4.4!

wherez54 in 2D @41# andz52 in 3D. The coefficientA is
independent ofGeff and ġ chosen in our simulations, a
shown in Figs. 10~a! and 10~b!. Notice that the data points a
the largestj in Fig. 10 are those at zero shear for eachGeff .
At present we cannot explain the origin of these simple nu
bers forz. We may only argue thatz should be larger in 2D
than in 3D because of stronger configurational restriction
2D. It is surprising that Eq.~4.4! holds even in strong shea
ġtb(0)@1, where the correlation length is independent oT
and is determined by shear as

j;ġ21/z. ~4.5!

FIG. 8. Sb(q) versusq on logarithmic scales for variousGeff at
ġ50 in 2D ~a! and 3D~b!. Its long-wavelength limit is of orderj2

as Eq.~4.3!.
ng
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In Fig. 10~b! for 3D, however, we noticej.L at Geff
51.50 and 1.55 for weak shear. At present we cannot as
the influence of this finite-size effect.

In a zeroth-order approximation, therefore, the kine
heterogeneities are characterized by a single parameter,j or
tb , owing to the small space anisotropy induced by shea
our systems. The shear rateġ is apparently playing a role
similar to a magnetic fieldh in Ising spin systems. Thus,ġ
and T are two relevant external parameters in supercoo
liquids, whileh and the reduced temperature (T2Tc)/Tc are
two relevant scaling fields in Ising systems.

V. SUPERCOOLED LIQUID RHEOLOGY

We next examine nonlinear rheology in our fluid mixtur
in supercooled amorphous states. We first display in Fig.
the shear-dependent viscosityh(ġ) ~in units ofet0 /s1

d) ver-
sus ġ in steady states at variousGeff in 2D and 3D. This
rheological behavior is similar to those in the experime
@24–26#. The viscosity is much enhanced at largeGeff ~low
T! and at low shear, but it tends to be independent ofT at
very high shear. Remarkably, glassy states exhibit large n
Newtonian behavior even whenġ is much smaller than the
microscopic frequency 1/t051, whereas such large effec
are expected to appear only forġ;1/t0 in normal liquids far
from the critical point@47,49#.

In Fig. 12 we demonstrate that the viscosityh(ġ)

FIG. 9. Sb(q)/Sb(0) on logarithmic scales for variousGeff andġ
in 2D ~a! and 3D~b!. The solid line is the Ornstein-Zernike form
1/(11x2) with x5qj.
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5sab /ġ is determined solely by the bond breakage tim
tb(ġ) in Eq. ~3.15! as

h~ġ!>Ahtb~ ġ !1hB , ~5.1!

whereAh andhB are 0.34 and 6.25 in 2D, and 0.24 and 2
in 3D, respectively. Because the linearityh}tb is systemati-
cally violated at smalltb , the presence of the backgroun
viscosity hB independent ofGeff and ġ may be concluded
Note that the effective exponent (ġ/h)(dh/dġ) remains
about20.8 in Fig. 11. As well as the kinetic heterogeneitie
steady state rheology is determined only by a single par
eter,tb or j. This suggests that a sheared steady state ca
fairly mapped onto a quiescent state with a higher temp
ture but with the samej.

Substitution of Eq.~3.15! then yields

h~ġ!>Ah /@tb~0!211Abġ #1hB . ~5.2!

This form coincides with the empirical law~1.1! by Simons
et al. @24,25#. Figure 13 shows that the ratio@h(ġ)
2hB#/@h(0)2hB# can be fitted to the universal curve 1/(
1Abx) with x5ġtb(0) independently ofGeff both in 2D and
3D. In strong shearġtb(0)@1, we have the temperature

FIG. 10. Universal relation between the correlation lengthj(ġ)
in units of s1 and the bond breakage timetb(ġ) in units of t0 in
Eq. ~2.2!. In 2D ~a!, the line of the slope 4 is a viewing guide andL
is the system length. The corresponding 3D plot is shown in~b!
with the slope being 2.
,
-

be
a-

independent behaviorh(ġ)>(Ah /Ab)/ġ1hB , which is evi-
dently seen in Fig. 11. If the background viscosity is neg
gible, a constant limiting stress follows as

sxy>s lim5Ah /Ab , ~5.3!

which holds for

1/tb~0!!ġ!smin /hB;0.1/t0 . ~5.4!

Here,s lim is 0.59 in 2D and 0.30 in 3D in units ofe/s1
d and

is typically a few percent of the pressure in our systems. T
upper bound in Eq.~5.4! is very large in the usual glass
forming liquids but should be attainable in colloidal system
while the lower bound can be very small with loweringT.

We will argue to derive the above behavior intuitivel
Supercooled liquids behave as solids against infinitesi
strain on time scales shorter thantb(0) even if the tempera-
ture is considerably above the so-called glass transition t
perature. Fluidlike behavior is realized only after the bo
breakage processes. It is natural that the viscosity is of o
tb(0) in the linear regime. This is usually justified from th
time correlation function expression for the viscosity
terms of thexy component of the stress tensor@45#. In strong
shear, on the other hand, the bond breakage occurs on
time scale of 1/ġ. Upon each bond breakage induced
shear, the particles involved release a potential energye r

FIG. 11. The viscosityh(ġ) in units ofet0 /s1
d versus the shea

rateġ in units of 1/t0 at variousGeff in 2D ~a! and 3D~b!. The data
tend to become independent ofGeff at high shear.
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whose maximum ise. There should be a distribution ofe r ,
but let us assumee r;e for simplicity. It is then instanta-
neously changed into energies of random motions~and prob-
ably sounds! supported by the surrounding particles. T
heat transport is rapid in this dissipative process. Becaus
this and also because of the background thermal mot
superposed, we have not detected clear temperature inh
geneities such ashot spotsaround broken bonds in our simu
lations. The heat production rate is estimated as

Q;ne/tb~ ġ !;neġ, ~5.5!

wheren is the number density. BecauseQ is related to the
viscosity byQ5sxyġ5h(ġ)ġ2, we obtain

sxy5h~ġ!ġ;ne ~5.6!

in high shear, sos lim;ne. Due to disordered particle con
figurations, however, it is natural to consider a distribution
the released energye r , which will explain the viscosity be-
havior at lower shear. Such a distribution was calculated
a model foam system in shear flow by Durian@28#.

VI. MOTION OF TAGGED PARTICLES

In this section we will follow the motion of tagged pa
ticles in a glassy matrix both in the absence and presenc
shear in 3D. We will present results only in three dime

FIG. 12. h(ġ) versustb(ġ) for variousGeff in 2D ~a! and 3D
~b!. Theh(ġ) is determined bytb(ġ) only irrespective ofGeff .
of
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sions. We first plot in Fig. 14 the self-part of the density tim
correlation function for variousGeff in the usual zero shea
condition,

Fs~q,t !5
1

N1
K (

j 51

N1

exp@ iq•Dr j~ t !#L , ~6.1!

whereq52p, Dr j (t)5r j (t)2r j (0), and thesummation is
taken over all the particles of the species 1. This function

FIG. 13. @h(ġ)2hB#/@h(0)2hB# vs ġtb(0) in 2D ~a! and 3D
~b!. The solid curve is 1/(11Abx) with x5ġtb(0).

FIG. 14. The self-part of the intermediate scattering funct
Fs(q,t) at q52p and ġ50 in 3D. Geff increases from left.
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proportional to the~incoherent! scattering amplitude from
labeled particles. As is well known, this function has a p
teau at low temperatures (Geff*1.45 in our case!, during
which the particle is trapped in a cage. After a long time
cage eventually breaks, resulting in diffusion with a ve
small diffusion constantD. In this paper we define thea
relaxation timeta such thatFs(q,ta)5e21 at q52p.

We generalize the time correlation function~6.1! in the
presence of shear flow by introducing a new displacem
vector of thejth particle as

Dr j~ t !5r j~ t !2ġE
0

t

dt8yj~ t8!ex2r j~0!, ~6.2!

whereex is the unit vector in thex ~flow! direction. In this
displacement, the contribution from convective transport
the average flow has been subtracted, which can be kn
from the time derivative,

]

]t
Dr j~ t !5vj~ t !2ġyj~ t !ex . ~6.3!

To get a clear understanding of the meaning of this subt
tion, let us consider a Brownian particle placed in shear fl
as a simple example. On time scales longer than the re
ation time of its velocity, its positionr(t) obeys

]

]t
r~ t !5ġy~ t !ex1f~ t !, ~6.4!

where f(t) is the Gaussian random force characterized
^ f m(t) f n(t8)&52Ddmnd(t2t8) (m,n5x,y,z). Then the
modified displacement vector reads

Dr~ t ![r~ t !2ġE
0

t

dt8y~ t8!ex2r~0!5E
0

t

dt8f~ t8!. ~6.5!

Here the convective effect does not appear explicitly and
diffusion behavior follows as

^Dr~ t !2&56Dt. ~6.6!

On the other hand, in the incoherent scattering amplitu
Dr j (t) in Eq. ~6.1! should be taken as the net displacem
r j (t)2r j (0) even in shear flow. IfqxÞ0, it strongly depends
on the thickness of the scattering region in they ~velocity
gradient! direction due to a position-dependent Doppler
fect @23,50#. Only for qx50, it is proportional toFs(q,t) in
the above definition.

Figure 15 showsFs(q,t) at q52p for various ġ with a
fixed temperature,Geff51.5 or kBT/e50.267 in 3D. Com-
parison of this figure with Fig. 14 suggests that applyi
shear is equivalent to raising the temperature. Recall tha
have made the same statement in analyzing the bond s
ture factorSb(q) and the nonlinear rheology. Also, we ma
define the shear-dependenta relaxation timeta5ta(ġ) by

Fs~q,ta!5e21. ~6.7!

In Fig. 16 we recognize thatta is proportional to the bond
lifetime tb as

ta>0.1tb . ~6.8!
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This relation holds for anyGeff andġ in our 3D simulations.
The decay ofFs(q,t) is not exponential for largeta . If it is
fitted to the stretched exponential form exp@2(t/ta)a# around
t;ta , the exponenta is increased from values about 0.8
1 with increasingġ as well as with raisingT. Furthermore,
the time correlation function~6.1! has turned out to be al
most independent of the direction of the wave vectorq.

Next, it is convenient to analyze the mean square d
placement of tagged particles of the species 1,

^@Dr~ t !#2&5
1

N1
(
j 51

N1

^@Dr j~ t !#2&. ~6.9!

Figure 17 shows the transition from the ballistic behav
^@Dr(t)#2&>3(kBT/m1)t2 to the diffusion behavior
^@Dr(t)#2&>6Dt in shear flow atGeff51.5. The arrows in
the figure indicate thea relaxation timeta(ġ). The diffu-
sion behavior is almost attained att;ta . Figure 18 demon-
strates the surprising isotropy of the statistical distribution
Dr i(t), where the mean square displacements of thex, y, and
z components of the vectorDr j (t) are separately displayed
We can thus determineD from the mean square displace

FIG. 15. The time correlation functionFs(q,t) at q52p de-
fined by Eqs.~6.1! and ~6.2! in shear flow, whereġ50, 1024,
1023, 1022, and 1021 from the right. The temperature is fixed a
kBT/e50.267 (Geff51.5). Increasingġ is equivalent to raisingT.

FIG. 16. The linear relationship betweenta andtb for various
Geff and ġ in 3D. The tb is determined from the bond breakag
~3.14!, andta from the decay of the time correlation function~6.7!.
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ment in addition tota in shear flow. Note that thex compo-
nent in Fig. 18 is not the usual mean square displacem
due to the second term in Eq.~6.2!. In the Appendix we will
consider the variances of the net displacement vectorr j (t)
2r j (0).

Figure 19 shows the shear rate dependences of the vis
ity h (;ta) and the inverse diffusion constantD21 from
the linear (ġ&1025) to the non-Newtonian regime atGeff

51.55 in 3D, whereD is measured in units ofs1
2/t0 andh

in units of et0 /s1
d . We deduce the relationD21;ġ2n with

n50.75–0.80 in agreement of the experiment@36#, which is
appreciably milder than the viscosity decreaseh;ta
;ġ21. In Fig. 20, we plotD versush/kBT ~in units of
t0 /s1

d) obtained for variousGeff andġ. The Einstein-Stokes
formula, which holds excellently in normal liquids, appea
to be violated in supercooled liquids as the other simulati
have suggested@40,41#. It is widely believed that this break
down is a natural consequence of the dynamic heterogen
in glassy states@36–38#. Detailed numerical analysis wil
appear in a forthcoming paper.

FIG. 17. The mean square displacement in sheared state
Geff51.5. The shear rateġ is 0, 1024, 1023, 1022, and 1021 from
the right. Increasingġ is equivalent to raisingT. The arrows indi-
cateta for eachġ. The diffusion~linear! behavior is attained att
;ta .

FIG. 18. The mean square displacements of thex, y, andz com-
ponents. They are very close to one another even in strong s
ġtb(0)@1. This demonstrates surprising isotropy of the distrib
tion of the displacement vector~6.2!.
nt
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In our caseh/kBT changes over 4 decades untilj reaches
the system dimensionL, whereas it has been changed ov
12 decades in the experiments@36,37#. Though the same
tendency indicating the breakdown of the Einstein-Sto
relation has been obtained in our simulation, we should
mit that our system size in 3D is not yet sufficiently larg
and our data atGeff51.5 and 1.55 might be somewhat a
fected by the system size effect. It is worth noting that t
Monte Carlo simulation of a dense polymer by Ray a
Binder @18# shows that the monomer diffusion constant d
creases with increasing system size.

VII. SUMMARY AND DISCUSSIONS

Most of our findings in this work have been obtained fro
numerical analysis only without first-principles derivation
Nevertheless, we believe that they pose new problems
suggest new experiments. We make some discussions m
tioning possible experiments below.

at

ar
-

FIG. 19. Shear rate dependences of the inverse diffusion c
stantD and the viscosityh at the lowest temperature,Geff51.55.
The slope ofD21 is noticeably smaller than that ofh.

FIG. 20. The diffusion constantD versus the viscosityh divided
by kBT for various Geff and ġ. Here D is measured in units of
s1

2t0
21 andh/kBT in units of s1

2dt0. The solid line represents th
Einstein-Stokes formulaD5kBT/2phs1 , which agrees well with
the numerical data forh/kBT&10.
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~i! Introducing the concept of bond breakage, we ha
succeeded to quantitatively analyze the kinetic heteroge
ities in simple model systems, which have been witnesse
a number of the authors. As shown in Fig. 6, strings co
posed of broken bonds are very frequent and they aggre
at low temperatures to form clusters. The bond break
time tb is related to the correlation lengthj as Eq.~4.4!. In
future work we should clarify the relationship of our patter
in the a relaxation and those by Muranaka and Hiwatari@9#
on a much shorter time scale.

~ii ! The weakly bonded regions identified by the bo
breakage are purely dynamical objects. Large-scale heter
neities have not been clearly detected in snapshots of
usual physical quantities such as the densities, the stress
sor, the kinetic energy~5temperature!, etc. On the other
hand, in granular matters in shear flow@30#, stress heteroge
neities have been observed optically by using birefring
materials. We admit the possibility that such stress hetero
neities also exist in supercooled liquids but are masked
the thermal fluctuations. We will check this point in the f
ture.

~iii ! It is of great interest how the kinetic heterogeneitie
which satisfy the dynamic scaling~4.4!, evolve in space and
time and why they look so similar to the critical fluctuatio
in Ising systems in the mean field level. In our steady-st
problemT and ġ are two relevant scaling fields, thecritical
point being located atT5ġ50. No divergence has been d
tected at a nonzero temperature in our simulations.

~iv! In his experiments, Fischer@51# has reported large
excess light scattering with a correlation leng
j (20–200 nm) that increases on approaching the g
transition from a liquid state. This indicates the presence
very large-scaledensityheterogeneities in supercooled liq
uids, which is often called Fischer’s clusters. Motivated
this effect, Weberet al. @52# performed Monte Carlo simu
lations on a dense polymer and found that short-range n
atic orientational order can give rise to enhancement of lo
range density fluctuations. They expected that s
anisotropic interactions could be the origin of Fischer’s cl
ters. This suggests that Fischer’s clusters do not exist in
uids composed of structureless particles.

~v! We have examined nonlinear rheology in glas
states. The rheological relations obtained are simplest am
those consistent with the experiments@24–26#. The mecha-
nism of the non-Newtonian behavior in supercooled liqu
is conceptually new and should be further examined in
periments such as in colloidal systems in glassy states
particular, polymers should exhibit pronounced no
Newtonian behavior, as the glass transition is approac
even without entanglement. Rheology of chain systems
mains totally unexplored near the glass transition.

~vi! In our systems, small anisotropic changes of the p
correlation functionsgab(r ) near the first peak (;sab) can
give rise to the limiting shear stresss lim , which is 3–5 % of
the pressure in our case. Note that our systems are hi
compressed with high pressure. However, the pressure
not be very high in supercooled liquids in the presence o
attractive part of the potential. Even in such cases, we ex
that s lim is a few percent of the shear modulus. This is su
gested by the previous work on amorphous alloys@31–35#,
where the yield stresssy in the inhomogeneous case~in
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which shear bands appear! is known to be 2–3 % of the
shear modulus.

~vii ! Stillinger expected that in fragile glass-forming liq
uids shear flow occurs bytear and repairof slipping walls
separating strongly bonded regions@7#. We have not ob-
served such localization of slips or jump at least in our te
perature range. But there might be a tendency that bro
bonds form surfaces at low temperatures in 3D, though
conspicuous, which should be checked in the future.

~viii ! There is no tendency of phase separation for
parameters used. However, there are many cases in w
the composition fluctuations are enhanced towards the g
transition temperature. It is of great interest how the t
transitions influence each other@53,54#. It is also known that
shear flow can induce composition fluctuation enhancem
in asymmetric viscoelastic mixtures, when emergence of
viscous regions can reduce the effective viscosity@23#. We
expect that this effect can come into play also in supercoo
liquids, for example, for large enough size ratios or in t
presence of small attraction between the two compone
Experiments to detect this effect seem to be promising
colloidal systems.

~ix! We have introduced the time correlation functio
Fs(q,t) in shear and found its simple relaxation behavior
Fig. 15. It coincides with the usual time correlation functio
for qx50 or when the scattering vector is perpendicular
the flow direction. Dynamic scattering experiments in sh
flow would be very informative to detect the shear-induc
diffusion @23#. A direct diffusion measurement in sheare
supercooled fluids, which will be analyzed in the Append
is also very interesting. Though our system size is still t
small, we have detected a tendency of the breakdown of
Einstein-Stokes relation in 3D to obtainD;h2n with n
50.75–0.8.

~x! In strong shear the structural relaxation is charac
ized byta;0.1tb;0.1/ġ as Eq.~6.8!. This nonlinear effect
could be measured as a drastic reduction of the rotatio
relaxation time by dielectric response or by more sophi
cated techniques@36,37# from sheared supercooled liquid
The same effect is expected for periodic shear flow.

~xi! Understanding transient mechanical response in te
of the kinetic heterogeneities is of great importance. For
ample, we have found a stress overshoot after applicatio
shear strain in accord with the experiments@24,25#. We
should also understand glassy behavior of the complex s
modulus against small periodic shear@55#. We will report on
these topics shortly.

~xii ! In our systems, we have not yet found essential d
ferences between 2D and 3D except for the difference in
value of the dynamic exponentz in Eq. ~4.4!. We believe that
a large part of the essential ingredients of glassy dynam
can be understood even in two dimensions.

~xiii ! In a forthcoming paper, we will focus our attentio
on jump motions of particles over distances longer thans1 .
They will be shown to occur heterogeneously in space
determine the diffusion constant. These heterogeneity st
tures are essentially the same as those in the bond brea
processes studied in this paper.
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APPENDIX

Let us calculate the variances among thex, y, andz com-
ponents,xj (t)2xj (0), yj (t)2yj (0), and zj (t)2zj (0), of
the net displacement vectorr j (t)2r j (0) of thejth particle in
shear flow. We fix its initial position r j (0) at r0
5(x0 ,y0 ,z0). The average displacement arises from the c
vection as

^r j~ t !2r j~0!&5ġty0ex . ~A1!

Assuming the isotropy of the subtracted displacement~6.2!,
which is suggested by Fig. 18, we may write the variance
the y andz components as
m

ys

et
a

C

le

n

s
is

ar-
r
r
-

-

f

G~ t !5^@yj~ t !2yj~0!#2&5^@zj~ t !2zj~0!#2&. ~A2!

The variance of thex component then becomes

^@xj~ t !2xj~0!2ġty0#2&5G~ t !12ġ2E
0

t

dt1~ t2t1!G~ t1!.

~A3!

The cross correlation exists between thex andy components
as

^@xj~ t !2xj~0!#@yj~ t !2yj~0!#&5ġE
0

t

dt1G~ t1!. ~A4!

In the diffusion time regimet*ta we may setG(t)52Dt to
obtain

^@xj~ t !2xj~0!2ġty0#2&>2Dt~11 1
3 ġ2t2!, ~A5!

^@xj~ t !2xj~0!#@yj~ t !2yj~0!#&>Dġt2. ~A6!

Note thatD is strongly dependent onġ in strong shear as
shown in Fig. 19. Measurements of the above variances
very informative.
ys.
.

ys.
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